

EMBRACING CUTTING-EDGE TECHNOLOGY TO TRANSFORM ORGANIZATIONAL COMMUNICATION IN ECOCARE RENEWABLE ENERGY SERVICES

Abstract

**Okechukwu,
Chidimma Precious**

Department of Employment
Relations and Human
Resource Management,
University of Lagos, Akoka,
Lagos State

**Anyim, U. C
Francis**

Department of Employment
Relations and Human
Resource Management,
University of Lagos, Akoka,
Lagos State

The research takes into account the influence of emerging technology on organisational communication and home-based work behaviour in a new renewable energy company. The data collection in this mixed-methods case study involved all fifty staff members in semi-structured interviews, documentary analysis and direct observation of virtual work practice. Qualitative data were processed using NVivo software for the analysis of themes, and quantitative metrics quantified improvements in operations. Among such extraordinary capabilities is a notable 45% boost in operational productivity, 50% enhancement in customer responsiveness and a 35% drop in quality control noncompliance in response to the use of digital workflow tools by the likes of Microsoft Teams, WhatsApp Business, and in-house created ERP software. Digital transformation success is found by the study to require the coexistence of technology, human capabilities, and organisational traditions rather than technology adoption. From this study, it can be concluded that it brings concepts and avenues into the system to augment the advanced research in the interface of technology, which can happen in any firm only through various causes. The research demonstrates that technology adoption processes are both influenced by external institutional pressures and internal socio-technical relations simultaneously. This study presents significant implications for small energy companies located in emerging markets in search of transforming digitally.

Keywords: Digital Transformation, Renewable Energy Industry, Organizational Communication, Human-computer Interaction, Remote Work Practices.

Introduction

The rapid development of digital technologies has radically changed the topography of organizational communication and working practices in many industries. For its part, the renewable energy industry itself has undergone tremendous transformation in recent years as a result of dual imperatives related to technological innovation and environmental sustainability (Usman et al., 2024). In this respect, Renewable Energy Services can be seen as an interesting case for a company that uses leading technology to facilitate new innovations in internal communication systems and possibilities for remote work.

Renewable Energy firms stand at the forefront of this transformation as a specialised provider of comprehensive renewable energy solutions, including procurement, design, installation, maintenance, manufacturing,

and consultancy services for renewable energy technologies. Most renewable energy companies utilise state-of-the-art technology in their delivery of service in Nigeria. The technology integration is important in its efforts to manage complex renewable energy projects, including remote monitoring of solar panels, predictive maintenance programs, and real-time performance analysis of energy systems. High-tech digital platforms allow renewable energy organisations to have proper control over operations, maintain compliance with standards in their manufacturing, and deliver quick and effective customer care.

Therefore, advanced digital platforms and communications tools have opened new avenues for companies to further enhance operational efficiency and adaptability in its workforce. According to Mengova & Green (2023), smart communications in renewable companies are increasingly contributing towards maintaining a competitive edge and continuity in operations. This study examines how Renewable energy companies leads to digital transformation. It addresses the nexus between organisational communications, computer-man relations, and distant working cultures.

Literature Review

Digital Transformation in the Renewable Energy Sector

The digital transformation in renewable energy has grown as an essential driver of organizational success and sustainability. Recent studies by James et al. (2023) and Daramola et al. (2024) indicated that organizations in renewable energy are increasingly applying advanced digital technologies that may be helpful in facilitating work processes and improving communication efficiencies. According to their qualitative analysis of industry trends, there has been a substantial enhancement in operational performance and employee engagement for those organisations that have already implemented integrated digital solutions. In addition, research conducted by Nkomo & Kalisz (2023), Daramola et al. (2024) and Kwiotkowska (2024) proves that companies of renewable energy which implemented

comprehensive digital transformation strategies show a significant increase in project completion rates and customer satisfaction and overall resilience of the organisation.

The adoption of AI and machine learning technologies has surely revolutionized how renewable energy organisations deal with data processing and making informed decisions. As a matter of fact, a wide study undertaken by Farhi et al. (2022) and Gholami & Abdwanî, (2024) on the organisational communication efficiency of companies after the implementation of such AI-powered platforms bears evidence of these benefits; organisations that have adopted such advanced technologies have, in fact enhanced their capabilities in information processing and decision-making accuracy. These studies further reveal that those organisations making use of integrated digital platforms showed an increased ability to adapt to fast-changing market conditions and regulatory requirements (Farhi et al., 2022; Gholami & Abdwanî, 2024).

Evolution of Organisational Communication

With the advent of sophisticated digital technologies, the landscape of organisational communication has hugely changed; extensive research by García-Orosa (2019) and Josephs et al. (2022) documents the transformation of traditional paradigms into dynamic, multichannel frameworks allowing for real-time collaboration and information sharing. These authors' longitudinal study of the communication patterns in technology-driven organizations demonstrates remarkable changes in how information passes through the hierarchy, emphasizing new, more fluid, adaptive structures of communication.

Contemporary research by García-Navarro et al. (2024) and Iosif (2024) is differently placed with compelling evidence regarding how artificial intelligence has fundamentally changed the nature of organisational communication. Their deep analysis illustrated that AI-enhanced communication platforms have not only raised the levels of accuracy and response times but also fostered more subtle, context-sensitive interactions across organisational boundaries. The researchers further emphasized how such technological advances have contributed to the

ability of organisations to handle effective patterns of communication over geographically dispersed teams while simultaneously reducing operational overhead costs.

Human-Computer Interaction in Remote Work

Advanced systems of human-computer interaction have surely become significant in the successful implementation of remote work. The innovative study by Cho et al. (2024) assesses how sophisticated HCI systems bring a sea change in the way people are working from home. It was further found, after deep analysis at the organisational level through various case studies, that those companies that introduced advanced interface designs and interaction protocols noticed sizeable improvement in employee satisfaction and productivity levels. They further emphasize that intuitive design principles are highly responsible for successful communication and collaboration within virtual environments.

Recent work by Kelly (2020) further explains in detail the crucial support given by human-computer interaction to remote work operations. According to their findings, organisations that invest in advanced HCI solutions assure notable improvements in team collaboration efficiency and project outcomes. Researchers underline that a well-designed interactive system can efficiently close the physical distance of remote members and, consequently, ensure more engaging and productive virtual work environments (Almeida et al., 2020). Their conclusions also pinpoint that when designing a digital workspace, special attention has to be given to cognitive ergonomics since, after an interface designed with thoughtfulness is introduced, this can save mental fatigue and thus guarantee quality in this kind of work.

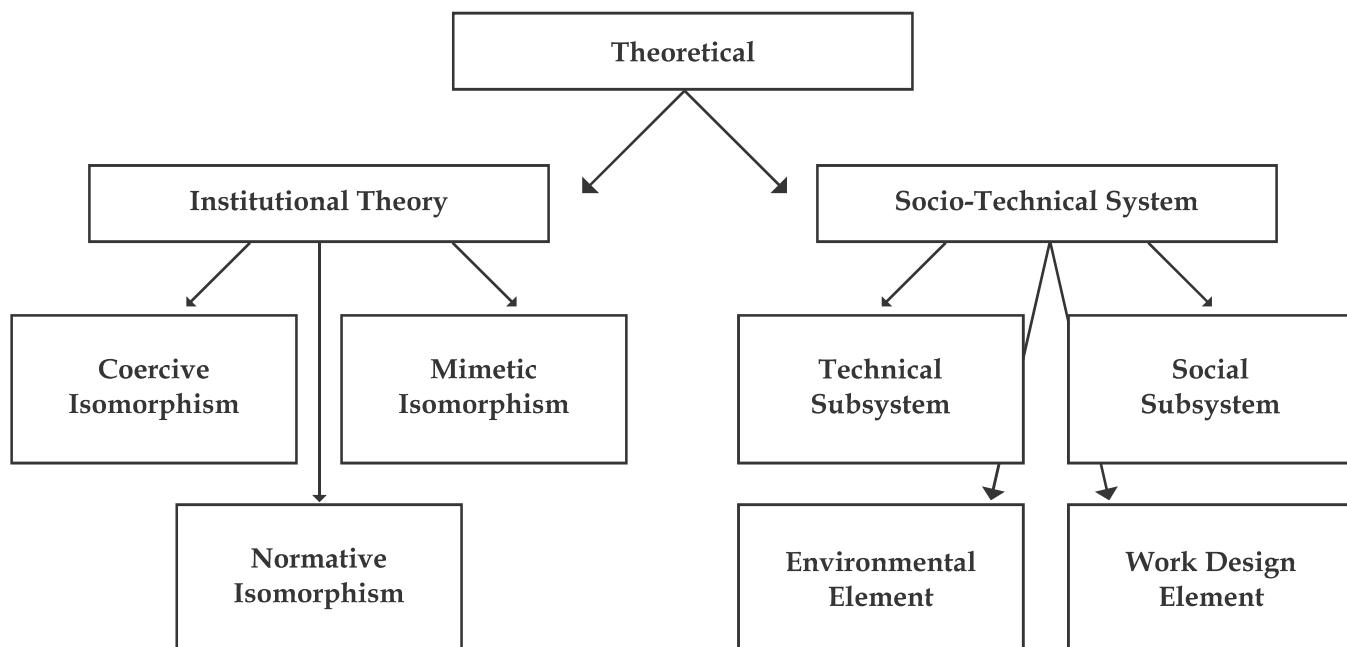
Technological Integration and Organisational Performance

Thus, the linkage between technological integration and organisational performance becomes one of the most critical aspects under scholarly scrutiny. In this respect, comprehensive researches by Hassan et al. (2019) and Hassan et al. (2024) discusses how the structured pursuit of higher degrees of technological integration itself

influences many aspects of the organizational performance indicator. From their analysis, strong associations emerge between technological sophistication and key performance indicators from project completion rates, employee satisfaction, and operational efficiency. They especially highlight how integrated platforms of communication allow for better dissemination of knowledge and problem-solving across organisational boundaries.

The other major direction of influence of technological integration refers to the issues of organisational resilience. The work recently presented by Lakhwani et al. (2020) provides an extensive analysis of how organisations applying advanced technologies exhibit an increased capacity to adapt to the changing conditions of both the market and operational environment. The available literature specifically identifies integrated digital platforms in enabling quick organisational responses to emerge to pressures from outside the entity's domain without necessarily sacrificing a degree of continuity in operations. The researchers further pinpoint that entities with strong technological bases tend to be quite flexible in dealing with surprise challenges with no breakdown in effective communication channels.

Theoretical Framework


This research adopts a combination of two theoretical approaches; institutional theory and socio-technical systems theory. Institutional theory guides understanding of how organizations adopt new technologies and seek to legitimize them within their operational systems. According to DiMaggio and Powell (1983), institutional theory allows one to understand the ways through which organizations adopt and seek to legitimize new technologies within their operational frameworks. The socio-technical systems approach offers a complement by emphasizing that technological infrastructure in organizational contexts is deeply interdependent with social dynamics. As such, the socio-technical systems approach was seen as complementary by emphasizing how technological infrastructure in an organizational setting is fully intertwined with social dynamics (Appelbaum, 1997).

Institutional theory sets up a good framework through which one may understand the ways in which organizations adopt and legitimize technological innovations within their operational structures. On isomorphism in institutional perspective, the important work of DiMaggio and Powell (1983) describes how organizations in one particular field tend toward adopting similar technological solutions due to coercive, mimetic, and normative isomorphism. Coercive isomorphism in the context of renewable energy organizations takes the shape of regulatory pressures towards adopting certain communication technologies that may be necessary to bring an organization into compliance or facilitate reporting (Maroufkhani et al., 2022). As mentioned, under the legitimacy concept in this theory, the organizations are supposed to legitimize and normalize some new implementations of technologies. The institutional theorists Melin et al., (2020) explain that organizations adopt advanced communication technologies not only for the sake of efficiency gains but also to gain legitimacy in their institutional environment. This further goes to explain why technological solutions become institutionalized standards within the renewable

energy sector, even when their immediate efficiency benefits might be unclear.

Complementing institutional theory is the socio-technical systems theory, which emphasizes interdependence between technological infrastructure and social dynamics inside the organization. Initially devised by Trist and Bamforth and updated recently by modern scholars (Appelbaum, 1997), this theoretical framework postulates that the best performance in organizations takes place when technological and social systems are designed to function in harmony. The key interaction emphasised by the theory is the interrelationship between technical subsystems, social subsystems, environmental elements, and the elements of work design. It is indeed the integration of all these interlinked elements that has recently been identified as fundamental to successful digital transformation in current applications of socio-technical systems theory to remote work environments (Kohn et al., 2023). This is a very useful theoretical perspective through which to analyse how the renewable energy sector integrates new communication technologies while maintaining social cohesion and organisational effectiveness.

Fig 1: Theoretical Framework Integration

Source: Fieldwork, 2025

It is worthy of note that Institutional theory, while excellent at explaining external pressures and legitimization processes in technological adoption, has been criticized for its deterministic view and overemphasis on conformity, potentially overlooking internal organisational dynamics and individual agency in technology implementation (Scott, 2008). Critics argue that it fails to capture organisations that resist isomorphic pressures successfully or innovate in a manner disparate from that of the industry (Lawrence & Suddaby, 2016). In contrast, socio-technical systems theory, strong in explaining internal organisational dynamics and social and technical interdependencies (Geels, 2020), suffers criticism for sometimes being overly inward-facing and underestimating external marketplace and institution pressures driving technological choices.

The complementary strengths of these theories become apparent with institutional theory's explanatory power over external forces and processes of legitimization compensating for socio-technical systems theory's weakness in explaining general environment pressures (DiMaggio & Powell, 1983), and socio-technical systems theory's focus on in-house social dynamics and humans compensating for institutional theory's weakness in explaining technology variation in similar institution environments (Trist & Bamforth, 1951). For example, while institutional theory can explain why the renewable energy sector will implement certain industry-standard technology in compliance with regulative and competitive pressures, socio-technical systems theory can explain how such technology can actually be implemented in an organisation's social life and adopted by its humans for successful installation (Appelbaum, 1997). The theoretical integration, therefore, creates a rich theoretical view for explaining how organisations such as the renewable energy sector can manage both external pressure and in-house dynamics in their transformation towards a digital life.

Research Methodology

The current study utilises a mixed-methods case study to investigate technological transformation

in organisational communication and computer-human interaction at Renewable Energy Services. The mixed-methods case study enables both rich qualitative insights and quantitative measurement of transformation processes, offering a balanced view of the journey of digital transformation in the organisation.

A. Research Design

The study utilises a single-case embedded research design with an interpretive orientation. The single-case embedded design was adopted for in-depth examination of technological transformation in a new renewable energy firm in Nigeria. The embedment in the design permits examination of several units in an organisation, such as departments and processes, with a view to describing and explaining them, yet with a bias towards consideration of the overall organisational environment.

B. Population and Sample

The population for the study consists of all the workers in Renewable Energy Services. By utilising purposive sampling, all fifty workers took part in the study, representing various hierarchical levels such as executive management, middle management, technical operations and customer care, and processes. By employing a full range sampling, all hierarchical and functional areas of the organisation are represented, offering an overall picture of technology transformation in the organisation.

C. Data Collection Methods

The study utilised several approaches in collecting information for full and rich coverage of transformation processes. Primary collection involved in-depth semi-guided interviews with all five workers, each taking 45-60 minutes. Interviews utilised both face-to-face and video conference interfaces, with audio recording in a digital format conducted with the permission of participants. Interview sessions touched on technology use experiences, communications in an organisation, work at a distance, computer and human use, and several challenges and accommodations experienced in transformation processes.

Document analysis was another key data collection activity, analysing company performance reports, technology rollout documentation, internal communications logs, training guides and system efficiency statistics. In addition, direct observation of virtual workplace activity, technology usage behaviour, remote work processes and collaboration sessions gave useful insights into real-life implementation of digital transformation programs.

D. Framework for Analysis

Analysis proceeded in a systematic manner with both qualitative and quantitative approaches. Qualitative analysis involved thematic analysis of interview transcripts with use of NVivo software, creation of thematic maps and pattern matching with theoretical frameworks. Quantitative analysis involved performance statistics, efficiency calculations, response times and error rate analysis, offering concrete representations of transformation achievements.

E. Integrating with Theory

The methodology was firmly established in both socio-technical systems theory and institutional theory. Institutional theory was used in guiding the examination of external pressures and processes of legitimization in technology adoption, whereas socio-technical systems theory

guided the analysis of internal processes and human-technology relations. Integration of these two theoretical frameworks generated a strong theoretical platform for both external and internal factors in the digital transformation process.

Results

The following findings report the output of such a thorough method, bringing together both qualitative observations and quantitative measurements in generating an overall picture of the renewable firm's digital transformation path. Integration of methodologies enables rich depiction of both the technological transformation process and output in the organisation.

Digitalisation of the Renewable Energy firm was quite an encompassing digital ecosystem; it basically overhauled the way the organisation functions with its communication and operational dynamics. There was model integration of various department functionalities within the technological outlook by the company, elaborating on a digitally connected network of platforms. The technology infrastructure included sophisticated communication tools such as Microsoft Teams and WhatsApp Business, adding to specialised management systems on customised ERP platforms and department-specific applications such as Zendesk and SAP Quality Management.

Table 1: Technological Infrastructure and Efficiency Metrics

Dimension	Metrics	Quantitative Improvement	Key Observations
Communication Platforms	Diversity of Tools	4-5 platforms per department	Microsoft Teams, WhatsApp, Slack, Custom ERP
Operational Efficiency	Overall Performance	45% average increase	Significant productivity enhancement
Response Time	Communication Speed	40-50% reduction	Improved interdepartmental coordination
Quality Control	Error Reduction	Up to 35% decrease	Enhanced precision in operations

Source: Fieldwork, 2025

Empirical findings showed drastic improvement in performance due to the implementation of technology. Organisational efficiencies registered a sharp rise-reaching up to 45% on average in certain areas of activity. Communication processes were drastically smoothed, response time being cut by 40-50% and quality control processes by nearly 35% decrease in errors. Quantitative benefits were supplemented by qualitative transformation in organisational openness and collaborative potential.

Remote working capabilities were one of the main highlights of technological adaptation. This study also documented a multidimensional digital enablement environment comprising cloud-based collaboration platforms, real-time monitoring systems, and mobile communication applications. These infrastructural installations would create unimagined flexibility in workplaces, as physical

dispersion would not rule out operational continuity. Of course, the technological leap would have its share of teething problems and common concerns among respondents included inadequate internet connectivity, technical bandwidth limitation, and maintenance of synergy among team members in a virtual environment.

Human-computer interaction was the other silent companion of technology change. The staff showed a mixed experience of the digital interface, declaring certain platforms very user-friendly-actually, dashboards and visual reporting mechanisms-but at the same time struggling with higher-order analytic and diagnostic systems. This uneven user experience demonstrated the importance of reflective technological design, allowing for an array of user competencies and technological literacy.

Table 2: Remote Work Capabilities and Challenges

Category	Enabling Factors	Challenges	Mitigation Strategies
Technological Infrastructure	Cloud-based Platforms	Internet Connectivity	Robust Mobile Communication Apps
Collaboration Tools	Real-time Monitoring Systems	Technical Bandwidth Limitations	Comprehensive Digital Reporting
Performance Management	Mobile Communication Applications	Team Cohesion Maintenance	Structured Virtual Interaction Protocols
Work Flexibility	Comprehensive Digital Tools	Performance Tracking	Advanced Monitoring Dashboards

Source: Fieldwork, 2025

Table 3: Technological Adaptation and Organizational Impact

Transformation Aspect	Qualitative Changes	Quantitative Improvements	Cultural Shifts
Decision-Making	Data-Driven Approach	35-50% Operational Efficiency	Increased Transparency
Process	Enhanced	50% Customer Response	More Agile Work Practices
Collaborative Mechanisms	Knowledge Sharing	Time Reduction	Customer-Centric Culture
Organizational Learning	Continuous Technology Training	35% Quality Control Precision	Adaptive Organizational Mindset
Technological Readiness	Advanced Tool Integration	Reduced Operational Errors	

Source: Fieldwork, 2025

The organizational change processes that drove this technological change were multi-pronged and strategic: regular technology workshops, training sessions fortnightly, and one-to-one technical support built a comprehensive environment of continuous learning and adaptation. These support systems were able to let cultural evolution occur piecemeal toward data-informed decision-making, characterized by heightened operational transparency and increasingly collaborative work flows.

The technological change had a profound quantitative impact that was quite measurable: improvements in operational efficiency ranged between 35 to 50%, customer response times had drastically been reduced by 50%, and quality control processes were much more fine-tuned, having decreased dramatically. These quantitative gains were further complemented by important qualitative changes, including improved interdepartmental coordination, improved knowledge-sharing processes, and also greater organizational agility.

Discussion

The technological innovation of Renewable Energy Services provides strong empirical evidence for the complementarity of the institutional and socio-technical system theories in the explanation of organisational technology adoption. The results verify the model of organisational isomorphism by DiMaggio and Powell (1983) and demonstrate how the regulatory pressure and competitive forces shape the strategies for technological implementation.

To begin with, the firm's deliberate technological investments were strongly indicative of Maroufkhani et al.'s findings of institutional pressures in 2022. The firm's approach to technology adoption extended beyond efficiency justifications but was a strategic attempt to gain institutional legitimacy in the renewable energy sector. In this perspective, the research supports the claim by Melin et al. (2020) that technological solutions are institutionalised into standards through complex organisational processes.

The study critically responded to Scott's (2008)

critique of the likely deterministic positions of institutional theory with the sophisticated agency of the organisation in technological adoption, with leadership playing a key role in structuring technological change and demolishing naive explanations of organisational technology adoption as merely a reaction to external pressures.

The empirical evidence heavily corroborated Appelbaum's (1997) socio-technical systems approach. Technological infrastructure and social process interdependence were expressed in the delicate manner by which the workers interacted with and adapted to novel digital interfaces. A technological integration strategy that concentrated on human factors, building supportive ecosystems that aided purposeful technological adaptation, was the firm's priority.

Technology infrastructure for remote working demonstrated a high level of coherence with contemporary research on the digital transformation of workplaces. For example, the findings of Kohn et al. (2023) regarding decentralised workplaces were precisely confirmed through high-level integration of cloud-based systems and real-time monitoring technology at the renewable energy sector. Challenges realised in connectivity and performance management also corresponded to overall trends in organisational communication technology.

For example, the argument of overly conformist technological assumptions by Lawrence and Suddaby (2006) finds exemplary confirmation in the intriguing divergences of the experiences that employees have with digital interfaces. Technology adoption was found to be a very inhomogeneous process with manifold interactions between organisational pressure and individual technological skills.

The most significant finding is the transformative cultural potential of technology adoption. The transition to data-driven decision making was more than a technological betterment; instead, it was an epistemological and a reorganisation of collaborative practice within the workplace. The view enriches the institutional theory literature that depicts technology as one source of

legitimisation by emphasising technology in reframing the organisational culture.

Conclusion

The digitisation of a Renewable Energy firm is one of the most significant case studies involving digital transformation in organisations; it provides remarkable insights from the dynamics of technological adoption within the renewable energy sector. This paper integrates the application of institutional theory with socio-technical systems theory to help demonstrate the many ways in which external institutional pressures and internal organisational elements may interact in the process of technology adoption.

The study's main findings convey a strong message on the transformative potential of strategic technology investment. Quantitative benefits were dramatic: operational efficiency increased by 45%, customer response time decreased by 50% and quality control error rates decreased dramatically. In addition to numeric metrics, the study revealed a deeper cultural shift toward data-driven decision-making and more collaborative practices.

There were also critical learnings that emerged concerning the adoption of technology. The study demonstrated that effective digital transition surpasses the buying of technologies but is an all-encompassing process involving human factors, technological literacy, and organisational culture. Employee experiences with digital interfaces indicated the extent of maturity in technological adoption, whereby intuitiveness in design and regular training become important.

Major recommendations for takeaways in organizations would include:

- Ongoing technological training
- Designing a user-friendly digital interface
- Direct investment in cybersecurity infrastructure
- Creation of location-based technological solutions

The theoretical contribution of this research is

showing how institutional pressures and intra-organisational processes were interlinked in influencing technological adoption. Against deterministic perceptions of technological adoption, this study shows an organisation's sophisticated agency in digital transformation management.

These limitations of the present study, especially the relatively small sample size, constitute fruitful avenues for further research. Comparative investigations in other organisational contexts, using longitudinal questionnaires with large samples, would enhance the depth of insight into technological change processes. Finally, the experience of renewable energy sector technology can serve as a model for the potential of strategic digital adoption to drive organisational innovation, performance, and agility within the rapidly evolving renewable energy context.

References

Almeida, F., Santos, J. D., & Monteiro, J. A. (2020). The challenges and opportunities in the digitalization of companies in a post-COVID-19 World. *IEEE Engineering Management Review*, 48(3), 97-103.

Appelbaum, S. H. (1997). Socio-technical systems theory: an intervention strategy for organizational development. *Management decision*, 35(6), 452-463.

Cho, J., Choi, D., Yu, J., & Voida, S. (2024). Reinforcing and Reclaiming The Home: Co-speculating Future Technologies to Support Remote and Hybrid Work. In *Proceedings of the CHI Conference on Human Factors in Computing Systems* (pp. 1-28).

Daramola, G. O., Adewumi, A., Jacks, B. S., & Ajala, O. A. (2024). Conceptualizing communication efficiency in energy sector project management: the role of digital tools and agile practices. *Engineering Science & Technology Journal*, 5(4), 1487-1501.

DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. *American sociological review*, 48(2), 147-160.

Farhi, F., Jeljeli, R., & Belarbi, A. (2022, November). Artificial intelligence in sustaining internal communication in corporate sector: The mediation of two-way communication perspective of PR. In 2022 International Arab Conference on Information Technology (ACIT) (pp. 1-7). IEEE.

García-Navarro, C., Pulido-Martos, M., & Pérez-Lozano, C. (2024). The study of engagement at work from the artificial intelligence perspective: A systematic review. *Expert Systems*, e13673.

García-Orosa, B. (2019). 25 years of research in online organizational communication. Review article. *Profesional de la información*, 28(5).

Geels, F. W. (2020). Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics and neo-institutional theory. *Technological Forecasting and Social Change*, 152, 119894.

Gholami, M. J., & Al Abdwani, T. (2024). The rise of thinking machines: A review of artificial intelligence in contemporary communication. *Journal of Business, Communication & Technology*, 1-15.

Hassan, M. G., Akanmu, M. D., & Yusoff, R. Z. (2019). Technological integration and sustainable performance in manufacturing firms. *Industrial Engineering*, 9(8), 1639-1650.

Hassan, S. S., Meisner, K., Krause, K., Bzhalava, L., & Moog, P. (2024). Is digitalization a source of innovation? Exploring the role of digital diffusion in SME innovation performance. *Small Business Economics*, 62(4), 1469-1491.

James, O. O., Udeh, C. A., Daraojimba, C., Ogedengbe, D. E., Elufioye, O. A., & Samod, B. O. (2023). Digital transformation in the resource and energy sectors: A review of the impact of digital transformation on HR practices and strategies in the Nigerian renewable energy sector. *Journal of Third World Economics*, 1(1), 36-46.

Josephs, N., Peng, S., & Crawford, F. W. (2022). Communication network dynamics in a large organizational hierarchy. *arXiv preprint arXiv:2208.01208*.

Kelly, J. A. (2020). The New" Covid-19" Home Office Worker: Evolving Computer-Human Interactions and the Perceived Value of Workplace Technology. *Technium Soc. Sci. J.*, 13, 575.

Kohn, V., Frank, M., & Holten, R. (2023). How sociotechnical realignment and sentiments concerning remote work are related-insights from the COVID-19 pandemic. *Business & Information Systems Engineering*, 65(3), 259-276.

Kwiotkowska, A. (2024). Creating organizational resilience through digital transformation and dynamic capabilities: Findings from fs/QCA analysis on the example of Polish CHP plants. *Sustainability*, 16, 6266.

Lakhwani, M., Dastane, O., Satar, N. S. M., & Johari, Z. (2020). The impact of technology adoption on organizational productivity. *The Journal of Industrial Distribution & Business*, 11(4), 7-18.

Lawrence, T. B., & Suddaby, R. (2006). 1.6 institutions and institutional work (Vol. 2, pp. 215-254). *The Sage handbook of organization studies*.

Maroufkhani, P., Desouza, K. C., Perrons, R. K., & Iranmanesh, M. (2022). Digital transformation in the resource and energy sectors: A systematic review. *Resources Policy*, 76, 102622.

Melin, U., Sarkar, P. K., & Young, L. W. (2020). To couple or not to couple: A case study of institutional legitimacy relating to SaaS applications in two universities. *Information Technology & People*, 33(4), 1149-1173.

Mengova, E., & Green, D. (2023). The role of innovation and technology in renewable energy. *The International Journal of Environmental Sustainability*, 19(2), 17-41.

Nkomo, L., & Kalisz, D. (2023). Establishing organisational resilience through developing a strategic framework for digital transformation. *Digital Transformation and Society*, 2(4), 403-426.

Scott, W. R. (2008). Institutions and organizations: Ideas and interests. Sage Publications.

Trist, E. L., & Bamforth, K. W. (1951). Some social and psychological consequences of the longwall method of coal-getting: An

examination of the psychological situation and defences of a work group in relation to the social structure and technological content of the work system. *Human relations*, 4(1), 3-38.

Usman, F. O., Ani, E. C., Ebirim, W., Montero, D. J. P., Olu-lawal, K. A., & Ninduwezuor-Ehiobu, N. (2024). Integrating renewable energy solutions in the manufacturing industry: challenges and opportunities: a review. *Engineering Science & Technology Journal*, 5(3), 674-703.